Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 438(7069): 765-78, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16319829

RESUMO

The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Chuva , Voo Espacial , Vento , Umidade , Gelo/análise , Metano/análise , Metano/química
2.
Science ; 278(5344): 1758-65, 1997 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-9388170

RESUMO

Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.


Assuntos
Meio Ambiente Extraterreno , Marte , Água , Atmosfera , Gelo , Minerais , Vento
3.
Science ; 272(5263): 851-4, 1996 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-8629018

RESUMO

The Galileo probe net flux radiometer measured radiation within Jupiter's atmosphere over the 125-kilometer altitude range between pressures of 0.44 bar and 14 bars. Evidence for the expected ammonia cloud was seen in solar and thermal channels down to 0.5 to 0.6 bar. Between 0.6 and 10 bars large thermal fluxes imply very low gaseous opacities and provide no evidence for a deep water cloud. Near 8 bars the water vapor abundance appears to be about 10 percent of what would be expected for a solar abundance of oxygen. Below 8 bars, measurements suggest an increasing water abundance with depth or a deep cloud layer. Ammonia appears to follow a significantly subsaturated profile above 3 bars. Unexpectedly high absorption of sunlight was found at wavelengths greater than 600 nanometers.


Assuntos
Amônia/análise , Atmosfera , Meio Ambiente Extraterreno , Júpiter , Água/análise , Oxigênio/análise , Pressão , Radiometria , Temperatura
4.
Science ; 207(4429): 434-9, 1980 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17833555

RESUMO

An imaging photopolarimeter aboard Pioneer 11, including a 2.5-centimeter telescope, was used for 2 weeks continuously in August and September 1979 for imaging, photometry, and polarimetry observations of Saturn, its rings, and Titan. A new ring of optical depth < 2 x 10(-3) was discovered at 2.33 Saturn radii and is provisionally named the F ring; it is separated from the A ring by the provisionally named Pioneer division. A division between the B and C rings, a gap near the center of the Cassini division, and detail in the A, B, and C rings have been seen; the nomenclature of divisions and gaps is redefined. The width of the Encke gap is 876 +/- 35 kilometers. The intensity profile and colors are given for the light transmitted by the rings. A mean particle size less, similar 15 meters is indicated; this estimate is model-dependent. The D ring was not seen in any viewing geometry and its existence is doubtful. A satellite, 1979 S 1, was found at 2.53 +/- 0.01 Saturn radii; the same object was observed approximately 16 hours later by other experiments on Pioneer 11. The equatorial radius of Saturn is 60,000 +/- 500 kilometers, and the ratio of the polar to the equatorial radius is 0.912 +/- 0.006. A sample of polarimetric data is compared with models of the vertical structure of Saturn's atmosphere. The variation of the polarization from the center of the disk to the limb in blue light at 88 degrees phase indicates that the density of cloud particles decreases as a function of altitude with a scale height about one-fourth that of the gas. The pressure level at which an optical depth of 1 is reached in the clouds depends on the single-scattering polarizing properties of the clouds; a value similar to that found for the Jovian clouds yields an optical depth of 1 at about 750 millibars.

5.
Opt Lett ; 5(5): 208, 1980 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19693174
6.
Science ; 205(4401): 76-9, 1979 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17778908

RESUMO

Several photometric measurements of Venus made from the Pioneer Venus orbiter and probes indicate that solar near-ultraviolet radiation is being absorbed throughout much of the main cloud region, but little above the clouds or within the first one or two optical depths. Radiative transfer calculations were carried out to simulate both Pioneer Venus and ground-based data for a number of proposed cloud compositions. This comparison rules out models invoking nitrogen dioxide, meteoritic material, and volatile metals as the source of the ultraviolet absorption. Models involving either small ( approximately 1 micrometer) or large ( approximately 10 micrometers) sulfur particles have some serious difficulties, while ones invoking sulfur dioxide gas appear to be promising.

7.
Science ; 205(4401): 80-2, 1979 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17778909

RESUMO

In this report the fluxes measured by the solar flux radiometer (LSFR) of the Pioneer Venus large probe are compared with calculations for model atmospheres. If the large particles of the middle and lower clouds are assumed to be sulfur, strong, short-wavelength absorption results in a net flux profile significantly different from the LSFR net flux measurements. Models in which the smallest particles are assumed to be sulfur gave flux profiles consistent with the measurements if an additional source of absorption is included in the upper cloud. The narrowband data from 0.590 to 0.665 micrometer indicate an absorption optical depth of about 0.05 below the cloud bottom. The broadband data imply that either this absorption extends over a considerable wavelength interval (as might be the case for dust) or that a very strong absorption band lies on one side of the narrowband filter (as suggested by early Venera 11 and Venera 12 reports). Thermal balance calculations based on the measured visible fluxes indicate high surface temperature for reasonable assumptions of cloud opacity and water vapor abundance. The lapse rate becomes convective within the middle cloud. For water mixing ratios of 2.0 x 10(-4) below the clouds we find a subadiabatic region extending from the cloud bottom to altitudes near 35 kilometers.

8.
Science ; 203(4382): 795-7, 1979 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17833001

RESUMO

The solar flux radiometer aboard the Pioneer Venus large probe operated successfully during its descent through the atmosphere of Venus. Upward, downward, and net fluxes from 0.4 to 1.0 micrometers were obtained at more than 390 levels between 185 millibars (at an altitude of approximately 61 kilometers) and the surface. Fluxes from 0.4 to 1.8 micrometers were also obtained between 185 millibars and about the level at which the pressure was 2 atmospheres. Data from 80 to 185 millibars should be available after additional decoding by the Deep Space Network. Upward and downward intensities in a narrower band from 0.59 to 0.66 micrometers were also obtained throughout the descent in order to constrain cloud properties. The measurements indicate three cloud regions above the 1.3-atmosphere level (at an altitude of approximately 49 kilometers) and a clear atmosphere beneath that level. At the 67 degrees solar zenith of the probe entry site, some 15 watts per square meter are absorbed at the surface by a dark ground, which implies that about 2 percent of the solar energy incident on the planet is absorbed at the ground.

9.
Science ; 188(4187): 468-72, 1975 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17734364

RESUMO

For 2 weeks continuous imaging, photometry, and polarimetry observations were made of Jupiter and the Galilean satellites in red and blue light from Pioneer 11. Measurements of Jupiter's north and south polar regions were possible because the spacecraft trajectory was highly inclined to the planet's equatorial plane. One of the highest resolution images obtained is presented here along with a comparison of a sample of our photometric and polarimetric data with a simple model. The data seem consistent with increased molecular scattering at high latitudes.

10.
Science ; 184(4143): 1279-81, 1974 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17784226

RESUMO

Pioneer 10 images of Jupiter show bright nuclei in the equatorial zone that appear to be thermally driven sources of cloud plume formations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...